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Back-flow and flow-alignment in pulsatile flows of Leslie–Ericksen
liquid crystals

L.R.P. DE ANDRADE LIMA and A.D. REY*

Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, Canada H3A 2B2

(Received 3 November 2005; in final form 23 February 2006; accepted 21 March 2006 )

Analytical solutions to the capillary pulsatile flow of Leslie–Ericksen liquid crystals under
small pressure drops are presented, when the imposed small pressure drop contains a steady
and a time-periodic contribution. The results show that pulsatile flows initiate periodic back-
flows (reorientation-induced flow) which are directly linked to flow-alignment characteristics
of the material. The experimentally measurable power requirement (flow rate6pressure
drop) is shown to be well suited to quantify back-flows and flow-alignment material
properties. The analysis reveals that power requirements deviate from the Newtonian limit
when the frequency of the oscillating pressure drop is close to the splay orientation diffusivity,
and backflows become significant. In the terminal zone (small frequencies) the response is
Newtonian and the power requirement is a quadratic function of amplitude. At large
frequencies, the amplitude of back-flow effects saturates and the power requirement is
proportional to the square of the alignment viscosity coefficient a3. An experimental
procedure to measure the flow-alignment viscosity coefficient a3 is formulated, based on large
frequency measurements, and a formula derived from the close-form solution to the Leslie–
Ericksen equations for capillary pulsatile flows.

1. Introduction

Rheological characterization of liquid crystals is impor-

tant in the processing of liquid crystals for structural

applications and the use of liquid crystals in display

applications [1, 2]. Rheological characterization usually

employs linear and non-linear steady, transient, and

oscillatory flows [2, 3]; here linearity refers to orienta-

tion changes due to the imposed flow deformations. The

flow geometries of use in rheology are parallel plates,

cone-and-plate, capillaries, to name a few [3, 4]. The use

of each of these flows for rheological characterization

entails significant practical issues, including edge effects,

entry losses and free surface instabilities [5]. In this

paper we focus on linear pulsatile capillary flow, and

show how this relatively simple geometry allows one to

detect important rheological information in a simple

manner. Pulsatile flows are characterized by the super-

position of a steady pressure drop and an oscillatory

pressure drop component, which creates a flow and

orientation periodic disturbance on the steady flow

orientation. From a fundamental point of view,

pulsatile flows of liquid crystals give rise to a flow type

were the essential features of liquid crystallinity, such as

anisotropic viscoelasticity and backflow processes [2],

are clearly manifested; here backflow refers to reor-

ientation-induced flow, and is the inverse of flow-

induced orientation.

A most significant temperature sensitive rheological

property is the shear-flow-aligning characteristics of

uniaxial rod-like nematics, which is set by the sign and

magnitude of the Leslie viscosity coefficient a3; for the

aligning regime (a3.0), the average molecular orienta-

tion or director vector (n), is close to the flow direction,

while in the non-alignment regime (a3,0), the steady

state orientation is non-planar and non-homogeneous

[3, 6, 7]. Some nematic liquid crystals (NLCs), such as

8CB, exhibit flow-aligning behaviour if the temperature

is sufficiently high but at lower temperatures are non-

aligning. At the flow aligning/non-aligning transition

temperature (Ta-n) the viscosity coefficient a3 is equal to

zero.

Next we describe the proposed rheological technique

that motivates this theoretical paper based on the

Leslie–Ericksen model [8–12]. Flow alignment has a

direct impact on back-flow, when the director is aligned

along the flow direction. As is well known, the

contribution of back-flow B to the momentum equation

in the linear regime is [8–12]:

B~{a3
Lh

Lt
ð1Þ
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where h is the small deviation of the director angle with

respect to the flow direction. Furthermore, the director

velocity Lh/Lt is given by the sum of an elastic

contribution (S((h)) and a pressure drop contribution

(a3DP):

Lh

LeTT
~S +hð Þza3DP ð2Þ

the latter being introduced by a3; (h denote spatial

gradients and DP is proportional to the pressure drop.

Hence the director velocity is a function of a3 and the

strength of back-flow may be written:

B! a3ð Þ2 ð3Þ

thus connecting flow-alignment to back-flow. The next

link into the rheological technique is the relation

between back-flow and flow rate. As mentioned above,

the pulsatile flow has a steady and an oscillatory

velocity component. The oscillatory component is

due to transient oscillations and back-flow. Hence the

total flow rate will have a steady and a back-flow

contribution:

Q~QsteadyzQback{flow ð4Þ

where according to equations (3) and (4):

Qback{flow!a2
3. Finally, measuring the pumping power

W (W5Q6DP), gives direct information on the

magnitude of a2
3. In this paper we focus on 4-n-octyl-

49-cyanobiphenyl (8CB), which has well characterized

viscoelastic parameters and an aligning/non-aligning

rheological transition at T538.36uC; this transition has

been the subject of many studies [2, 7, 13]. The Leslie–

Ericksen model has been shown to capture most if not

all rheological features of 8CB [7, 14, 15] and is well

suited for most low molar mass NLCs far from phase

transition regions, when order parameter processes have

significant impact on flow-processes.

The objectives of this paper are: (1) to characterize

the role of back-flow and flow-alignment in pulsatile

flow of NLCs by solving the Leslie–Ericksen nemato-

dynamics equations; (2) to characterize the relationship

between power requirements and flow-alignment in

pulsatile flows of NLCs; (3) to propose a rheological

procedure to assess the magnitude of a3 by measuring

pumping power.

This paper is organized as follows. Section 2 presents

the governing equations and auxiliary data to describe

the NLCs pulsatile capillary Poiseuille flow. Section 3

presents the analytical results and discussions for

the pulsatile capillary Poiseuille flow in the linear

viscoelastic regime. Section 4 presents the conclu-

sions.

2. Theory and governing equations

2.1. Leslie-Ericksen equations

Flowing liquid crystal systems generate elastic and

viscous stresses and torques. The elastic energy arises

from spatial gradients in the average orientation and to

lowest order is given by the Frank energy density Fd [1,

16]:

2Fd~K11 +:nð Þ2zK22 n:+|nð Þ2zK33 n|+|nj j2 ð5Þ

where K11, K22 and K33 are the splay, twist and bend

temperature–dependent elasticity moduli.

The Leslie–Ericksen continuum theory of flowing

uniaxial NLCs is given by the linear momentum balance

equation and the internal angular momentum balance

equation. The orientation is defined by the director n

that is a unit vector collinear with the average molecular

orientation direction, as shown in figure 1. For incom-

pressible and isothermal conditions the momentum

balances are:

r
Lv

Lt
zv:+v

� �

~fz+:t ð6Þ

r1

::
n~Gzgz+:p ð7Þ

where r is the density, v is the velocity, f is the body

force per unit volume, t is the total stress, r1 is the

moment of inertia per unit volume, G is the external

director body force, g is the intrinsic director body

force, and p is the director stress tensor.

The constitutive equations are:

t~{pI{
LFd

L+n
:+nTza1 nn : Að Þnnza2nNza3Nnza4A

za5nn:Aza6A:nn

ð8Þ

g~an{b:+n{
LFd

Ln
{c1N{c2n:A ð9Þ

p~bnz
LFd

L+n
ð10Þ

2A~+vz+vT; 2W~+v{+vT; N~
:
n{W:n ð11a; b; cÞ

c1~a3{a2; c2~a6{a5~a3za2 l~{c2=c1 ð12a; b; cÞ

where p is the pressure, I is the unit tensor, {ai}, i51…6,

are the six Leslie viscosity coefficients, A is the rate of

deformation tensor, N is the corotational derivative of the

director, b and a are respectively an arbitrary vector and an

arbitrary scalar used to constrain the director (n) to be a

unit vector, c1 is the rotational viscosity, c2 is the

irrotational torque coefficient, W is the vorticity tensor
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and l is the reactive parameter. The Leslie viscosity

coefficients are linked by equation (12 b) and by four

inequalities arising from thermodynamic restrictions [1,

16].

The inertial term in the linear momentum balance

equation (6) and the director inertia in equation (7) are

both neglected; the former is because the velocity field

evolves much faster than the orientation field, so the

velocity relaxation time is irrelevant with respect to the

orientation relaxation time [1]; the latter is because it is

insignificant in comparison with the retained viscous

terms.

2.2. Leslie-Ericksen equations for transient capillary
Poiseuille flow

Consider a small-amplitude oscillatory Poiseuille capil-

lary flow of a nematic liquid crystal, driven by pressure

drop oscillations of infinitesimal amplitude, as shown in

figure 1, in which the cylindrical coordinate system is

also defined. The flow is described by an axisymmetric

oscillatory planar director field (n(r, t)5(sin h(r, t), 0,

cos h(r, t))), and a purely axial oscillatory velocity field

(v(r, t)5(0, 0, v(r, t))) with finite velocity gradient at the

centreline. Linearizing around the axial direction (i.e.

sin h@h, cos h@1), the dimensionless governing equations

for the director tilt angle h ~r, ~tð Þ and the axial velocity
~v ~r, ~tð Þ simplify to [8–12]:

~gsplay

Lh

L~t
~

L
L~r

1
~r

L
L~r

~rhð Þ
� �

z
~a3

2 ~g1

E ~r ð13Þ

L~v

L~r
~{

E ~r

2~g1

z
~
B ð14Þ

~
B~{

~a3
~g1

Lh

L~t
ð15Þ

~gsplay~
~c1{

~a 2
3

~g1

~~c1 1{
~c1

4~g1

1{lð Þ2
� �

ð16Þ

where ~gsplay is the dimensionless splay viscosity, eaai

are the dimensionless Leslie viscosities (eaai~eaai=SgT),

<g> is the average Miesowicz viscosity [16],

E ~v ~tð Þ~ R3

K11
{ dp

dz
~v ~tð Þ

� �

is the ratio of viscous flow

effects to long range elasticity effects known as the

Ericksen number, ~r~r=R is the dimensionless radius, R

is the capillary radius, ~t~K11t
�

R2SgT
� 	

is the dimen-

sionless time, ~v~SgTRv=K11 is the scaled axial velocity,

2dp/dz is the given small amplitude oscillatory pressure

drop in the capillary per unit length, ~v~v R2SgT
� 	�

K11

is the dimensionless frequency, and B is the back-flow

[8–12].

The boundary conditions for the director orientation

angle represent strong planar anchoring,

h 0,~tð Þ~h 1,~tð Þ~0, and for the axial velocity the no

slip condition at the bounding surface is used,
~v 1,~tð Þ~0. The director oscillates around the velocity

(z) direction, and the undistorted director field is given

by: no5(0, 0, 1), or perfectly aligned along the flow

direction.

For the small amplitude oscillatory capillary

Poiseuille flow considered in this paper, the Ericksen

number (i.e. dimensionless pressure drop) oscillates as

follows:

E~E0 1zA sin ~v ~tð Þ ð17Þ

where Eo is the average Ericksen number, A is the

amplitude, and evv is the dimensionless frequency. The

frequency ,v is scaled with the orientation time scale

to5(R2<g>)/K11 and the maximum elastic storage is

expected for frequencies close to the reciprocal of this

value.

2.3. Material properties

The viscoelastic material properties needed to charac-

terize the impact of flow-alignment on pulsatile flow of

NLCs, when the director is aligned along the capillary

axis, includes the Miesowicz viscosities g1, the torque

coefficient a3, and the reorientation viscosity gsplay [1,

16]. Here we give a basic discussion of well known

results [1, 8–12, 16].

The Miesowicz shear viscosities that capture the

viscous anisotropy of liquid crystals are measured in a

steady simple shear flow between parallel plates with

fixed director orientations along three characteristic

orthogonal directions: (1) g15(a3+a4+a6)/2 when the

director is parallel to the velocity direction; (2)

g25(2a2+a4+a5)/2 when it is parallel to the velocity

Figure 1. Capillary flow of a uniaxial rod-like nematic liquid
crystal, show the unit normal vector (u), the director vector
(n), the velocity vector (v), the velocity gradient ((v), the
alignment angle (h) and the cylindrical (r, w, z) coordinate
system used to describe a generic point P. Under pressure drop
oscillations the director oscillates around no5(0, 0, 1).
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gradient; and (3) g35a4/2 when it is parallel to the

vorticity axis. The measured Miesowicz shear viscosities

for aligning nematics usually follow the ordering:

g2 > g3 > g1: ð18Þ

In the present flow g1 is the relevant steady shear

viscosity, but the average of the three Miesowicz

viscosities is used for scaling proposes.

The shear flow alignment of rod-like NLCs is

governed by the magnitude of the reactive parameter

viscosity coefficient a3(T). For rods the inequality a2,0

holds at all temperatures, but a3 may change sign. For

rod-like molecules, when a3,0 the material is known as

shear flow-aligning, and the director aligns within the

shear plane, at an angle hL, known as the flow-

alignment Leslie angle, given by [1, 16]:

hL~
1

2
cos{1 1

l

� �

: ð19Þ

In a steady simple shear flow when the director is

aligned along hL the viscous torques are zero. The Leslie

angle can be measured using optical methods. When

a3.0, non-aligning behaviour arises and equation (19)

does not hold.

The transient director reorientation is a viscoelastic

process, and the reorientation viscosities associated with

splay, twist, and bend deformations are defined by [1,

8]:

gtwist~c1 ð20Þ

gsplay~c1{
a 2

3

g1

ð21Þ

gbend~c1{
a 2

2

g2

: ð22Þ

These viscosities are given by the rotational viscosity

(c1) decreased by a factor introduced by the back-flow

effect. Back-flow is a reorientation-driven flow and is

essentially the reverse effect to flow-induced orientation.

The general expression for the reorientation viscosities

can be rewritten as ga5c12(TCi)
2/gi, where gi denotes

the corresponding Miesowicz viscosity and TCi the

corresponding torque coefficient. Since twist is the only

mode that creates no back-flow then gtwist5c1. For a

bend distortion the back-flow is normal to n and hence

the torque coefficient is a2, and the Miesowicz viscosity

is g2. On the other hand for a splay distortion the back-

flow is parallel to n and hence the torque coefficient is

a3, and the Miesowicz viscosity is g1. In the present flow

the relevant reorientation viscosity is gsplay5c12a3
2/g1.

For a material like 8CB, the splay viscosity is a

minimum at the aligning/non-aligning transition.

In this paper we use the viscoelastic material

parameters of 8CB, shown in table 1 [17, 18]. At a

temperature T5Ta-n538.5uC, the viscosity coefficient

a350. As mentioned above for temperatures above Ta-n,

a3,0 and flow-alignment is observed, while for

temperatures below Ta-n, a3.0 and non-alignment is

observed. In this paper we discuss results in terms of a3.

2.4. Power requirement

Under steady pressure drop, the dimensionless steady

state flow rate
~
Qs Eroð Þ is given by:

~
Qs Eroð Þ~2p

ð

1

0

~vs
~r, Eroð Þ~r d~r ð23Þ

and the corresponding dimensionless apparent steady

viscosity ~gapp,s Eroð Þ is:

~gapp,s Eroð Þ~ p Ero

8
~
Qs Eroð Þ

: ð24Þ

In pulsatile flow, the time-periodic instantaneous

dimensionless flow rate
~
Q tð Þ is:

~
Q eTT
� �

~2p

ð

1

0

~v ~r d~r ð25Þ

where evv is the instantaneous velocity. The time-averaged

dimensionless flow rate SeQQT is:

S~
QT~

2p
~t

ð

~t

0

ð

1

0

~v ~r d~r

0

@

1

Adu, ~t~
2p
~v

ð26Þ

and ~t is the cycle period of the pressure wave.

The power requirement per unit length to pump a

fluid is given by the product of the flow rate and the

pressure drop. The instantaneous power requirement to

pump a fluid using pulsating flow is given by [4, 19, 20]:

~
W ~tð Þ~~

Q ~tð ÞEr ~tð Þ: ð27Þ

The ratio between the power requirement to pump a

fluid using pulsating flow to steady flow is given by:

P~
S ~
WT
~

Ws

ð28Þ

where the dimensionless steady power requirement
~
Ws is

given by:

~
Ws~

~
Qs Ero ð29Þ
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and where the dimensionless average power requirement

S~
WT is:

S ~
WT~

2p
~t

ð

~t

0

~
QEr d ~t ð30Þ

Next we establish the relationship between flow align-

ment and power requirement, and develop a close-form

expression that relates P to a3.

3. Results and discussion

Imposing pressure oscillations on the NLC will produce

spatially non-homogeneous director oscillations. Since

NLCs are viscoelastic, the director oscillations will not

be in-phase with the applied pressure drop. Thus the

total director angle h ~r, ~t ; ~vð Þ is given by the sum of

the following in-phase, out-phase, and steady compo-

nents:

h ~r, ~t, ~vð Þ~hi
~r, ~vð Þsin ~v~tð Þzho

~r, ~vð Þcos ~v~tð Þzhs
~rð Þ: ð31Þ

Note here and in the rest of the paper in-phase means

oscillation in-phase with the imposed Ericksen number,

and hence the in-phase temporal variation is sin ~v~tð Þ,
while the out-of-phase is cos ~v~tð Þ. Solving equation (31)

using separation of variables, the in-phase hi
~r, ~vð Þ, out-

of-phase ho
~r, ~vð Þ, and steady hs

~rð Þ director components

are found to be:

Table 1. Viscosity coefficients of 4-n-octyl-49-cyanobiphenyl (8CB) [17, 18].

Set 1 2 3 4a 5 6 7

T/uC 34.00 35.00 37.00 38.36 39.00 40.00 40.50

Leslie viscosities coefficients/Pa s
a1 0.6510 0.1342 0.0382 0.0196 0.0138 0.0078 0.0060
a2 20.0707 20.0696 20.0587 20.0500 20.0458 20.0371 20.0305
a3 0.0404 0.0140 0.0031 0.0000 20.0011 20.0034 20.0055
a4 0.0582 0.0560 0.0520 0.0497 0.0488 0.0478 0.0474
a5 0.0644 0.0529 0.0472 0.0415 0.0388 0.0339 0.0315
a6 0.0341 20.0026 20.0084 20.0085 20.0082 20.0067 20.0046

Reactive parameter
l 0.2725 0.6639 0.9013 1.0000 1.0512 1.2042 1.4436

Dimensionless Leslie viscosities coefficients eaa1~a1=SgTð Þb
~a1 10.166 2.6671 0.8932 0.5067 0.3735 0.2291 0.1855
~a2 21.1044 21.3832 21.3725 21.2925 21.2395 21.0896 20.9428
~a3 0.6309 0.2782 0.07249 0.0000 20.02978 20.09985 20.1700
~a4 0.9089 1.1130 1.2159 1.2848 1.3207 1.4038 1.4652
~a5 1.0057 1.0513 1.1037 1.0728 1.0501 0.9956 0.9737
~a6 0.5325 20.05167 20.1964 20.2197 20.2219 20.1968 20.1422

Dimensionless rotational viscosity and irrotational torque coefficient
~c1 1.7350 1.6615 1.4450 1.2925 1.2097 0.9897 0.7728
~c2 20.4732 21.1050 21.3001 21.2925 21.2693 21.1894 21.1128

Dimensioneless Miesowicz viscosities
~g1 1.0362 0.6698 0.5460 0.5325 0.5345 0.5536 0.5765
~g2 1.5094 1.7738 1.8461 1.8251 1.8051 1.7445 1.6909
~g3 0.4544 0.5565 0.6080 0.6424 0.6604 0.7019 0.7326

Dimensionless re-orientation viscosities
~gtwist1 1.7350 1.6615 1.4450 1.2925 1.2097 0.9897 0.7728
~gsplay 1.3509 1.5459 1.4354 1.2925 1.2081 0.9717 0.7226
~gbend 1.4713 1.6178 1.4422 1.2925 1.2092 0.9840 0.7557

~a3
~g1

~gsplay

0.284351 0.074746 0.006705 0 0.001373 0.01853 0.06938

Elastic Constants/mdyne
K11 0.50 0.54 0.69
K33 0.97 0.45 0.62

aThe Leslie viscosities coefficients and the temperature are interpolated values. bThe average Miesowicz viscosity is defined as:
<g>5(g1+g2+g3)/3.
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hi~
eaa3AE0

2egg1

ber1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

err bei1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

{bei1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

err ber1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

evveggsplay ber2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

zbei21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q� �

0

B

@

1

C

A
ð32Þ

ho~
eaa3AE0

2egg1

ber1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

err ber1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

zbei1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

err bei1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

evveggsplay ber2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

zbei21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q� � {
err

evveggsplay

0

B

@

1

C

A ð33Þ

hs~
~a3
~g1

Eo

16
1{~r 2
� 	~r ð34Þ

where bein (x) and bern (x) are the Kelvin functions of order n [22]:

bern x~
X

?

k~0

cos 3p
4

nz p
2

k
� 	

k!C kz1znð Þ
x

2

� �2kzv

ð35Þ

bein x~
X

?

k~0

sin 3p
4

nz p
2

k
� 	

k!C kz1znð Þ
x

2

� �2kzv

: ð36Þ

Since the director field n is coupled to the velocity field v, see equation (6), imposing an oscillatory pressure drop on

the NLC will produce a velocity field with in-phase, out-of-phase, and steady components. Thus the total

dimensionless velocity field ~v ~r, ~t, ~vð Þ is given by the sum of the following in-phase and out-of-phase components:

evv err, ett, evv
� 	

~evvi err, evvð Þsin evvett
� 	

zevvo err, evvð Þcos evvett
� 	

zevvs errð Þ: ð37Þ

As indicated by equation (14), back-flow has a specific contribution to the velocity field through a3, we can further

express the velocity field in terms of pressure drop (DP) and back-flow (BF) contributions:

evv err, ett, evv
� 	

~evvi, DP err, evvð Þsin evvett
� 	

zevvo, DP err, evvð Þcos evvett
� 	

zevvs, DP errð Þ

zvi, BF r, evvð Þsin evvtð Þzvo, BF r, evvð Þcos evv tð Þ:
ð38Þ

Equation (38) shows that back-flow contributes to the in-phase and out-phase velocity components, while pressure

drop also has a steady state component ~vs, DP
~rð Þ.

Solving equation (14) using separation of variables in conjunction with the director solution, equations (32) and (33),

the in-phase (~vi, DP
~r, ~vð Þ, ~vi, BF

~r, ~vð Þ), out-of-phase (vo, DP
~r, vð Þ, vo, BF

~r, vð Þ), and steady vs, DP errð Þ velocity components

are found to be:

~vi, DP~
AE0

4~g1

1{~r 2
� 	

; ~vi, BF~
AE0

4

~a 2
3

~g 2
1

~gsplay

1{~r 2
� 	

z2Fvi
~v~gsplay

� 	� �

ð39a; bÞ

~vo, DP~0; ~vo, BF~
AE0

4

~a 2
3

~g 2
1

~gsplay

2Fvo
~v~gsplay

� 	� �

ð40a; bÞ

~vs, DP
~rð Þ~ E0

4~g1

1{~r 2
� 	

ð41Þ

where the frequency-dependent functions Fvi, Fvo are:
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Fvi evveggsplay

� 	

~
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q
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q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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1
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evveggsplay

q

zbei21
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q� �
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6
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3
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z
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q
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q
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q
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q
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q� �
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q

ber2
1
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q

zbei21
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q� �

2

6

4

3

7

5

ð42Þ

Fvo evveggsplay

� 	

~
bei1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

ber0
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q
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q� �
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q

errzber0
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q

err�bei0
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q

{ber0
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q� �
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ber2
1
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q

zbei21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q� �
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6
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7

5

ð43Þ

The back-flow contribution has both in-phase and out-of-phase components, and both are proportional to ~a 2
3 . At the

flow-aligning transition the back-flow velocities are zero and the flow is Newtonian.

The dimensionless pulsatile flow rate (
~
Q), calculated using equations (25) and (38), is given by:

Q evv, ett
� 	

~Qi, DP
~vð Þsin ~v ~tzQo, DP

~vð Þcos ~v~tzQs, DP

z
~
Qi, BF

~vð Þsin ~v~tz
~
Qo, BF

~vð Þcos ~v~t:
ð44Þ

The in-phase (
~
Qi, DP and

~
Qi, BF), out-of-phase (

~
Qo, DP and

~
Qo, BF) and steady (

~
Qs, DP) flow-rate components are:

~
Qi, DP~

pAE0

8~g1

ð45Þ

~
Qi, BF~

pAE0

8~g1

~a2
3

~g1
~gsplay

 !

1z8FQi
~v~gsplay

� 	� �

ð46Þ

FQi evveggsplay

� 	
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ber1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q

{ 1
2

ber0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

evveggsplay

q� �
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evveggsplay

q

zbei21
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q� �
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6
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7

5

ð47Þ

~
Qo, DP~0 ð48Þ

~
Qo, BF~

pAE0

8egg1

a2
3

~g1gsplay

 !

8 FQo
vgsplay

� 	

ð49Þ
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q� �

ð50Þ

~
Qs, DP~

pEo

8~g1

: ð51Þ

Using equations (26) and (44) the time-average dimensionless flow rate is found to be:

S~
QT~

~
Qi

~vð ÞSsin~v~t Tz
~
Qo

~vð ÞScos~v~t Tz
~
Qs~

~
Qs ð52Þ

Equation (52) shows that the average flow rate is
~
Qs, and thus only the usual pressure drop contribution is present in

the linear regime. The energy requirement is given by:

SWT~S~
Q ET~

~
Qi, DP

~vð Þz~
Qi, BF

~vð Þ
h i

EoSsin ~v~t 1zA sin ~v~tð ÞT

z
~
Qo, DP

~vð Þz~
Qo, BF

~vð Þ
h i

EoScos ~v~t 1zA sin ~v~tð ÞT

z Qs, DP½ �EoS1zA sin ~v~t T

ð53Þ

Equations (28), (52) and (53) show that the energy ratio (P) in the linear regime is given by the superposition of the

pressure-drop PDP and the back-flow PBF contributions:

P~PDPzPBF ð54Þ
Pulsatile flows of liquid crystals have an additional contribution to power requirements. Non-Newtonian fluids that

have no coupling between orientation and flow have no back-flow power requirement: PBF50. Using equations (52)

and (53) we find the energy ratio contributions to be:

PDP~1z
A2

2
ð55Þ

PBF~
A2

2

~a 2
3

~g1
~gsplay

 !

1z8Fp
~v~gsplay

� 	� �

ð56Þ
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ð57Þ

For a liquid crystal it is found that the power requirement scales as P3A2, which is in close correspondence to
non-Newtonian fluids [20]. Equation (56) is one of the main results of this paper and states that the power

requirement due to back-flow scales as:

PBF!~a 2
3 ð58Þ
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and hence both flow-aligning and non-aligning

nematics with the same magnitude of a3 have the

same power requirement.

Figure 2 shows the energy ratio (P) as a function of

the dimensionless frequency (evv) for 8CB at different

temperatures in the low Ericksen number region, for

A51. In the low frequency region the behaviour is

Newtonian and P51.5, in agreement with classical

results [20]. When the frequency increases the energy

ratio increases but this behaviour is temperature-

dependent. At the alignment/non-alignment transition

temperature (T538.36uC) the 8CB displays Newtonian

behaviour for all frequencies (line 4). Hence deviation

from Newtonian flow increases with the magnitude of

a3. The asymptotic values of equation (45) for low and

high frequency are:

P0~1z
A2

2
ð59Þ

P?~1z
A2

2
1z

~a2
3

~g1
~gsplay

 !

: ð60Þ

In rheological characterization one is interested in

universal functions that extract the common features of

the response. Typically, the master curve is found by

appropriate scaling [3]. In pulsatile flow, a universal

energy ratio curve indicates the presence of a frequency-

dependent back-flow function. According to equa-

tion (54), the energy ratio in the low Ericksen number

region can be easily collapsed into a universal curve:

P�~
2

A2
P{1ð Þ{1

� � ~g1
~gsplay

~a 2
3

~1z8F ~v~gsplay

� 	

ð61Þ

where P* is the scaled energy ratio. The only parameter

remaining in the scaling is

~v~gsplay~
v

Dsplay
; Dsplay~

K11

R2gsplay

ð62a; bÞ

where Dsplay is the splay diffusion constant [8–12].

Figure 3 shows the scaled energy ratio as a function of

the scaled dimensionless frequency (~v~gsplay). The func-

tion 1z8F ~v~gsplay

� 	

ranges between 0 and 1 and is a

universal rheological liquid crystal function. This

function is characterized by an initial ‘dead frequency’

region (P*50), an intermediate exponential frequency

dependence, and saturation at a large frequency

(P*R1). When the ratio of frequency to splay diffusion

is close to one, non-Newtonian behaviour sets in and

back-flow becomes significant. Equations (54), (59) and

(60) show that the scaled energy ratio P*, see equation

(61), can also be given by:

P�~
P{P0

P?{P0
: ð63Þ

The universal scaled energy ratio function (P*)

requires the evaluation of the Kelvin functions, see

Figure 2. Energy ratio (P) as a function of the dimensionless frequency (~v) for 8CB at different temperatures in the low Ericksen
number region and oscillation amplitude A51.
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equations (35) and (36), and special numerical pro-

cedures, not always available. To remove this

problem a fitting function was sought and found.

The scaled energy ratio P* was found to be well

fitted by:

P�~
1

1z0:2393 log ~v~gsplay

� 	� �{3:40
: ð64Þ

The two parameters fitting given by equation (64) is

almost perfect and the regression coefficient (R2) is

0.99998.

Having found a characteristic back-flow function,

next we establish how best to extract qualitative and

quantitative flow-alignment information from a pulsa-

tile flow. According to equation (60), the large fre-

quency limit of the energy ratio P‘ provides a way to

extract a3 from power measurements. Figure 4 shows

the large frequency value energy ratio P‘, see equa-

tion (66), as a function of viscosity coefficient a3 for

8CB. The figures shows that Newtonian behaviour is

found at the aligning/non-aligning transition tempera-

ture (T538.36uC) that corresponds to a350. The figure

shows that the power requirement decreases with

decreasing temperature if the material is non-aligning,

and increases with decreasing temperature if it is

aligning. Hence a few measurements at several tem-

peratures reveal whether the material is aligning or not.

Furthermore the deviation from P51.5 reveals a

deviation of a3 from a350. Many liquid crystalline

polymers have values of a3 close to zero, and pulsatile

flow may provide another way to verify this important

parameter. In a rheological experiment, the frequency at

which back-flow sets in gives the splay viscosity:

gsplay~
K11

R2vexp
: ð65Þ

Measurement of the power ratio at large frequencies

with a known amplitude A, allows one to compute the

flow-alignment coefficient a3:

a3~
2 P?{1ð Þ

A2
{1

� �

g1K11

R2vexp


 �1
2

ð66Þ

if the capillary radius R, the Miesowicz viscosity g1, and

the splay Frank constant K11 are known.

4. Conclusions

This paper presents analytical solutions to the capillary

pulsatile flow of Leslie–Ericksen liquid crystals under

Figure 3. Scaled energy ratio (P*) as a function of the scaled dimensionless frequency (~v~gsplay). The figure shows that the energy
ratio enters an exponential growth when the frequency v is close to the splay orientation diffusivity Dsplay, see equation (62 b). The
figure reveals the frequency dependence of back-flow: at small frequencies it is insignificant and at large frequencies it saturates.
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small pressure drops. The analytical results are used to

compute the power requirement in terms of frequency

and amplitude of the pulsating pressure drop and in

terms of viscoelastic material parameters. Pulsatile

flows are useful in measuring rheological material

functions because periodic perturbations to a steady

flow create periodic back-flows. The analysis reveals

that power requirements deviate from Newtonian

behaviour when the frequency of the oscillating

pressure drop is close to the splay orientation

diffusivity and backflows become significant. At small

frequencies the response is Newtonian and the power

requirement is a quadratic function of amplitude. At

large frequencies, the amplitude of back-flow effects

saturates and the power requirement is proportional to

the square of the alignment viscosity coefficient a3.

The frequency dependence of the back-flow is a

universal function and can be expressed with a simple

logarithmic expression. An experimental procedure to

measure the alignment viscosity coefficient a3 is

formulated, based on the large frequency measure-

ments, and a theoretical expression derived from the

close-form solution to pulsatile flow of Leslie–Ericksen

liquid crystals.
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